3.7 The postulates of Addition and subtraction

- Partition postulate A whole is equal to the sum of it's parts

 This postulate applies to:
- O Line Segments (any number, any length, congruence, measure)

• Angles (ADJACENT, any number, any measure, congruence, measure)

Statements	Reasons
------------	---------

1. WY = XZ

$$2. WX + XY = WY$$
$$XY + YZ = XZ$$

- 3. WX + XY = XY + YZ
- 4. XY = XY
 - 5. WX = YZ

- 1. <u>GIVEN</u>
- 2. Parktion
- 3. Substitution
- 4. reflexive Property
- 5. Subtraction

method 2 - partition without substitution

Statements	Reasons

2.

3.

4.

- 1. WY = XZ
- 2. WX + XY = XY + YZ
- 3. XY = XY
- 4. WX = YZ

- <u>GIVEN</u>
 - partition
 - reflexive Property
 - Subtraction

Statements

2.
$$QR = QR$$

$$3. PQ + QR = QR + RS$$

Reasons

- 1. GIVEN
- 2. reflexive Property
- 3 addition
- 4. Partition

Given: S is the midpoint of \overline{RT}

ST = SQ

Prove: RT = SQ + ST

Statements

1. S is the midpoint of \overline{RT}

- 2. RS (S)
- 3. RS = (SQ)
- 4. RT = RS+ ST
- 5. RT = SQ + ST

Reasons

- 1. given
- 2. if a point is a mapt it makes a = segments.
- 3. transitive property
- 4. partition
- 5. **Sabshaun** 6.

П

Given: $\overrightarrow{QA} \perp \overrightarrow{QD}$ $\overrightarrow{QB} \perp \overrightarrow{QC}$

Prove: $\angle BQD \cong \angle AQC$

Statements Reasons

1. <u>QA</u> ⊥<u>QD</u> <u>QB</u> ⊥<u>QC</u>

 $3. \ \angle \ 1 \cong \ \angle \ 2$

 $4. \ \angle \ 3 \cong \ \angle \ 3$

Addition

5. \angle 1 + \angle 3 \cong \angle 2 + \angle 3

2. \angle 1, \angle 2 are right \angle 's

6. \angle BQD \cong \angle AQC

2. _____

2

4. _____

5.

6. _____

Using Partition with Addition and Subtraction

Partition

*alphabetical order

*no '-'

Subtraction

Homework: worksheet

Statements	Reasons
------------	---------

- 1. WY = XZ
- 2. WY = WX + XYXZ = XY + YZ
- 3. WX + XY = XY + YZ
- 4. XY = XY
- 5. WX = YZ

- 1. <u>GIVEN</u>
- 2. partition
- $_{3.}$ _substitution
- 4. <u>reflexive property</u>
- 5. <u>subtraction</u>

3.7 Postulates of Addition and Subtraction.notebook	October 10, 2012