5.5 Proving Overlapping Triangles are congruent

- ♦ When proofs involve overlapping triangles that share sides and/or angles it is helpful to separate the triangles visually.
- Redraw the triangles separately
 - o label each part the same as the original drawing.
- Color code each triangle a separate color (highlight)
 - o use pencil to mark all original given information
 - use another colored pencil (or pen) to label congruence that you *need* to establish to reach your final prove.
- Use an index card to cover distracting parts of the picture from view.

Given: Δ BFC is Isosceles, with vertex angle F

$$\overline{DF} \cong \overline{EF}$$
 ,

Prove: △BDC ~ △CEB

Statements

Reasons

1) Δ BFC is Isosceles, with vertex angle F $\bullet \ \overline{DF} \cong \overline{EF}$

3)
$$\angle 1 \cong \angle 2$$
 (A) 3) $1808 \triangle thm$
4) $\cdot CF \cong BF$
5) $DF + CF \cong EF + BF$
6) $addition$
6) $DC \cong EC$ (S)
7) $\triangle BDC \cong \triangle CEB$
7) $ABDC \cong ACEB$
7) $ABDC \cong ACEB$
7) $ABDC \cong ACEB$

- 1) Given
- 2) Reflexive Property

Given: $\overline{AD} \cong \overline{ED}$, $\angle 1 \cong \angle 3$, $\angle 4 \cong \angle 5$

Prove: $\triangle ADB \cong \triangle EDC$

Statements

Reasons

1) $\overrightarrow{AD} \cong \overrightarrow{ED}$,	(s)
∠1 ≅ ∠3,	(1)
$/4 \simeq /5$	(/) `

- 2) La = La

 2) Reflexive F

 3) La+LI = La+L3

 4) LADB = LEDC(A)

 4) Partition

 5) ADB= DEDC

 5) ASA

1) given

- 2) Reflexive Property

Homework:

Page 190

4,6,7