
JCC Statistics

Final Exam Review Ch 7 & 8

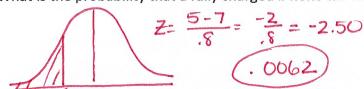
Name:

Date:

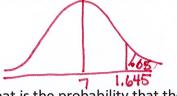
Use the figure to answer questions 1-4.

- 1. What is μ ? 6
- 2. What is σ ?
- 3. Suppose that the area under the normal curve to the left of x = 10 is 0.9332. Provide two interpretations for this area. The prob. that X < 10 is .9332 93.32% of all X-values are less than 10
- 4. Suppose that the area under the normal curve between x=5 and x=8 is 0.5328. Provide two interpretations for this area. The prob that 5 < x < 8 is .5328 53.28% of all x-values are less than 10

5. Find P(
$$0.21 < z < 1.69$$
)
 $.9545 - .5832 = .3713$


6. Find the z scores that separate the middle 88% of the data from the area in the tails of the standard normal distribution.

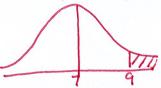
- 7. Suppose that the talk time on the Apple iPhone is approximately normally distributed with mean 7 hours and standard deviation of 0.8 hour.
 - a. What proportion of the time will a fully charged iPhone last a least 6 hours?


$$Z = \frac{6-7}{.8} = \frac{-1}{.8} = -1.25$$

$$1 - .1056 = .8944$$

b. What is the probability that a fully charged iPhone will last less than 5 hours?

c. What talk time would represent the cutoff for the top 5%?



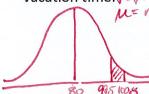
$$1.645 = \frac{X - 7}{.8}$$

$$X = 1.645(.8) + 7$$

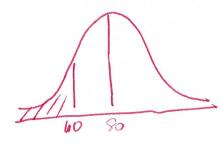
$$X = 8.316 \text{ hs.}$$

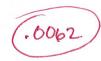
d. What is the probability that the iphone will hold its charge beyond 9 hours?

$$z = \frac{9-7}{.8} = \frac{2}{.8} = 2.50$$


e. What range of talk times will represent the middle 90%?

$$1.645 = \frac{x-7}{.8}$$


$$X = 7 \pm 1.645(.8)$$


- 1.645 = x-7 5.684<x<8.316 hrs.
- 8. In a poll conducted by the Gallop organization August 13-16, 2007, 16% of adult, employed Americans were dissatisfied with the amount of their current vacation time. A survey of 500 n.p.g ≥ 10 500(.16)(.84) = 67.21 employed Americans was conducted.
 - a. Approximate the probability that exactly 100 are dissatisfied with their amount of vacation time. $\sqrt{1 - \sqrt{1 - p \cdot q}} = \sqrt{167.2} = 8.20$

$$P(X=100) \rightarrow P(99.5 < X < 100.5)$$
 $Z = \frac{99.5 - 80}{8.2} = 2.38$
 $Z = \frac{100.5 - 80}{8.2} = 2.50$
 $Z = \frac{100.5 - 80}{8.2} = 2.50$

b. Approximate the probability that less than 60 are dissatisfied with the amount of their vacation time. $\nabla = \sqrt{n \cdot pq} = 8.2$ M= nip =80

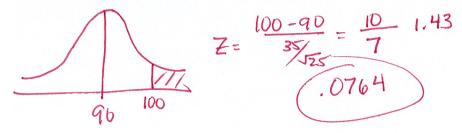
9. If a random sample of 36 is obtained from a population with mean 50 and standard deviation 24, what is the mean and standard deviation of the sampling distribution of the sample mean?

$$M_{x} = 50$$

$$T_{x} = 24/36 = 4$$

- 10. The charge life of a battery for DVD recorders is normally distributed with a mean 90 minutes and a standard deviation 35 minutes.
 - a. What is the probability that a randomly selected battery of this type lasts more than 100 minutes on a single charge?

$$Z = \frac{100 - 90}{35} = 0.29$$


b. Describe the sampling distribution of \overline{X} , the sample mean charge life for a random sample of 10 such batteries.

$$M_{X} = 90$$
 $O_{X} = 350 = 11.1$

c. What is the probability that a random sample of 10 such batteries has a mean charge life of more than 100 minutes?

$$\frac{2}{90000} = \frac{100 - 90}{35/10} = \frac{10}{11.1} = 0000.90$$

d. What is the probability that a random sample of 25 such batteries has a mean charge life of more than 100 minutes?

